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ABSTRACT
Determining a protein’s 3D from its sequences is one of the most
challenging problems in biology. Recently, geometric deep learning
has achieved great success on non-Euclidean domains including
social networks, chemistry, and computer graphics. Although it
is natural to present protein structures as 3D graphs, existing re-
search has rarely studied protein structures as graphs directly. The
present research explores the geometry deep learning of three-
dimensional graphs on protein structures and proposes a graph
neural network architecture to address these challenges. The pro-
posed Protein Geometric Graph Neural Network (PG-GNN) models
both distance geometric graph representation and dihedral geomet-
ric graph representation by geometric graph convolutions. This
research shed new light on protein 3D structure studies. We inves-
tigated the effectiveness of graph neural networks over five real
datasets. Our results demonstrate the potential of GNNs for 3D
structure prediction.
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1 INTRODUCTION
Prediction of a protein’s structure from its amino acid sequence
remains an open problem in the field of life science. The main practi-
cal problem confronting us is the challenge that comes from directly
predicting protein structure from primary sequence. A common
strategy used to study protein structure is to transform the direct
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prediction of protein structure into several problems, including
contact map prediction, secondary structure prediction, torsion
angles prediction and others. Especially with the recent growth of
convolutional neural networks (CNNs), several convolution neural
networks were proposed to tackle the problem in this field, such as
contact map prediction [28, 30], torsion angle prediction [13], and
protein structure-property prediction [29].

φ
ψ

Figure 1: Graph representation of the protein structure.

Following this road, a number of works have been done us-
ing deep convolution neural networks to predict the contact map
first, then recover the protein structure from contact maps. Several
challenges remain to be tackled: 1) The foremost challenge is
the fact that the protein contact/distance matrix cannot pro-
vide fully structural information needed for protein back-
bone structure modeling. Contact maps are sparse matrices [23]
that lack sufficient information to be treated by geometric represen-
tation because the only information that contact maps provide is
the upper or lower bound of the contact threshold. Multiple confor-
mations can be generated since alpha carbon can move freely in the
space within the contact threshold. Even though several recent stud-
ies [1, 32] use the distance matrix instead of contact map which con-
tains finer-grained information related to the alpha carbon pairwise
distances than the contact map, they are still insufficient to model
protein backbone geometry structure because of the absence of
structural information of other backbone atoms in the protein. The
free rotation of the chemical bonds around alpha carbon [25] cause
the backbone atoms to rotate accordingly. Hence further constraint
information is needed to model all atoms in the protein backbone
structure. As illustrated in Fig. 1, the protein backbone structure
composed of consecutive chains of coplanar units of Cα –CO –
NH – Cα with two primary degrees of freedom: dihedral angles
named Phi (𝜙) and Psi (𝜓 ). The rotation information on both sides of
the Cα in addition to distance matrix could provide further geomet-
ric information of all the atoms in the protein backbone structure.
Although both distance information and dihedral angle information

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1873

https://doi.org/10.1145/3447548.3467323
https://doi.org/10.1145/3447548.3467323


(a) 2D Convolution (b)
(a) Details of image convolution.
(a) 2D Convolution (b)(b) Pairwise ma-

trix

Figure 2: Illustration of image and pairwise distance matrix

are helpful to study the protein backbone structure, few studies
have focused on modeling multiple attributes for protein backbone
structural representations. 2) Secondly, it remains challenging
to capture the non-local relations in protein structures. Exist-
ing works [28, 30] typically use image CNN-based methods which
focus on local neighbor amino acids in the protein sequence but
cannot consider those far away in the sequence. As shown in Fig.
2(a), the 2D image convolution operation only focuses on local
information by multiplying the convolutional kernel over each
pixel and its local neighbors. Although this operation is enough
for image processing, one limitation of these methods is that our
pairwise feature matrix is not image representation. Fig. 2(b) shows
an example of the pairwise relation matrix, which represents the
amino acid pairs in the feature representation space. The green
cross in Fig. 2(b) shows the edges connected to the same nodes for
the black square edge. Although all the pairwise features in the
green cross could potentially influence the pairwise relation in the
black square, only the local relations were considered in the image
convolution process. Thus it remains challenging to model long-
range relations in the protein sequences. 3) The variable protein
sequence lengths and the large size of the protein structures
make the problem difficult to handle. This problem is usually
overcome by transforming the 2D feature maps via cropping [7, 28]
or padding [11]. Although such operations generate fixed-sized
inputs for the neural network, they could potentially cause the loss
of relational details or undesired distortion of the contact/distance
matrix. While there are few studies which model the chemical
molecules as a graph, considering protein as a whole graph to study
its structural properties remains an open problem in the area. The
long length of protein sequences and the large sizes of the proteins
have limited the approaches to model protein as one graph directly.

To rectify the above problems, we investigate the native struc-
tures of the protein and their common representations. Although
the natural way to represent a protein structure is to model it as a
3D graph, the protein 3D graph structure has rarely been studied
directly. Recent theoretical developments in graph neural networks
inspired us to look at protein structure representation differently.
Fig. 1 shows the structure of protein 2XSE. The backbone of the
protein holds a protein structure together with residues of each
amino acid. The Cα is the central atom in the backbone structure,
which has two backbone angles (𝜙,𝜓 ). Dihedral angles (𝜙,𝜓 ) for
alanine in protein 2XSE are marked in Fig. 1. We focus on over-
coming the protein structure problem by modeling the protein
structure as a 3D geometric graph and design a geometric graph
convolutional network architecture based on this specific problem.

Our goal is to generate distance geometric graph representation
and dihedral geometric graph representations together for protein
structure modeling. Compared to positional 3D graph representa-
tions, i.e., Cartesian coordinates of nodes, our proposed 3D graph
representation method gives a significant advantage because of its
invariance to rotation and translation of the graph. To the best of
our knowledge, this is the first work that can address all the above
challenges. We summarize the main contributions as follows:

• We formally formulate the problem of protein backbone
structure modeling as geometric 3D graph representations.
We model the input graph into multi-attribute graphs in
which the node represents the residues and the edge repre-
sents pairwise information between residues.

• A novel architecture is proposed for protein backbone 3D
structure graph generation. Our proposed model could gen-
erate a protein graph with both geometric distance graph
representations and geometric dihedral graph representa-
tions together.

• We propose the use of novel geometric graph convolution
blocks for distance geometric graph representation gener-
ations. As the sizes of the proteins vary, our proposed ap-
proach can handle the sizes of protein graphs dynamically.

• Comprehensive experiments were conducted to validate the
effectiveness of our proposed model in the generated 3D
geometric protein graphs.

2 RELATEDWORK
In this section, we will present and discuss three lines of research
that are relevant to our work.

2.1 Protein structure prediction
Experiments for protein structure determination are time-consuming
and expensive; thus, modeling the 3D structure of a protein remains
one of the most important problems in bioinformatics [21]. Signifi-
cant work has been done toward the construction of the protein
3D structure during recent decades. Critical Assessment of Protein
Structure Prediction (CASP) [17] established benchmarks and as-
sessed methods for protein structure prediction. Protein contact
map and conformation prediction have proven to help the recon-
struction of protein 3D structure [11, 24]. [13, 33] showed that
inter-residue orientations in addition to residue distances can be
used for protein structure prediction [3, 11].

2.2 Deep Learning for Protein Structure
Prediction

Deep learning-based methods were already widely used to solve
protein structure related problems, such as protein-protein interac-
tion prediction, protein contact map prediction, protein secondary
structure predictions, and protein dihedral angle predictions. Deep
learning methods for inter-residue distance and contact prediction
have considerably advanced protein structure prediction. [10] pro-
posed an energy-based model using transformer architecture for
protein conformation. [3] proposed end-to-end recurrent geometric
network to predict 3D protein structure. [4] generated a protein 3D
structure by using Generative Adversarial Networks. Currently, the
most successful methods for residue-residue distance prediction

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1874



are CNN-based neural networks. [30] first applied CNN to predict
protein contacts. [2], [12], [28] and [31] used dilated CNN method
for protein contact map prediction.

2.3 Graph Neural Network
Graph neural network (GNN) attracts attention in a wide range
of areas [35] including natural language processing, computer vi-
sion, traffic prediction, and so on. Graph convolutional network
has shown practical utility in the field of chemistry. Inspired by
GNN, several works treat molecules as graphs and achieved great
progress. [22] used graph neural networks to learn energy function
for small molecules. [9] proposed a three-dimensional graph con-
volution network to predict molecular properties. [14] uses graph
convolutional networks to predict protein site-specific functions.
[16] also utilizes GNN to tackle the molecule properties prediction
problem.

3 PROBLEM FORMULATION
The protein backbone holds the protein together and generates the
tertiary structure of the protein. This section introduces the protein
backbone geometry problem: this is a sequence-to-structure task
where we take protein amino acid sequences as input to predict
the geometry of 3D protein backbone structure. To tackle this com-
plex problem, we first formulate the protein structure into a graph
representation as follows:

We consider each input protein as a graph 𝐺 (V, E, 𝐸, 𝐹 ), where
V is the set of 𝐿 nodes in the graph representing amino acid residues
and E ⊆ V ×V is the set of 𝐿 − 1 edges in the protein sequence.
𝐹 ∈ R𝐿×𝐷 stands for the input node attribute matrix where 𝐹𝑖 ∈
R1×𝐷 refers to the node attribute of node 𝑖 and 𝐷 is the dimension
of the node attribute vector. The input node attributes 𝐹 include
position-specific scoring matrix, predicted secondary structure,
solvent accessibility, etc. 𝐸 ∈ R𝐿×𝐿×𝐾 is the edge attributes tensor,
where 𝐸𝑖, 𝑗 ∈ R1×𝐾 refers to the edge attribute of edge 𝑒𝑖, 𝑗 and
𝐾 is the dimension of edge attributes tensor. Likewise, the input
edge attributes tensor 𝐸 include co-evolution information, distance
potential, and inter-residue coupling score.

Similarly, the target protein backbone geometry graph can be
represented as 𝐺 (V ′, E ′, 𝐸 ′, 𝐹 ′), where V ′ is the set of 𝐿 nodes in
the graph representing target amino acid residues and E ′ ⊆ V ′×V ′

is the set of𝑀 edges in the target graph. 𝐸 ′ ∈ R𝐾×𝐿×𝐿 denotes the
target edge attribute matrix where 𝐸 ′

𝑘,𝑖, 𝑗
denotes the 𝑘-th feature of

edge 𝑒𝑖, 𝑗 . 𝐹 ′ ∈ R𝐻×𝐿 denotes the target node attributematrix, where
𝐹 ′
𝑘,𝑖

∈ R1×𝐻 is the node attributes of node 𝑖 and 𝐻 is the dimension
of the node attributes. For example, the 𝑘-th node attribute phi of
node 𝑖 is the dihedral angle between the plane Ci–1

β , Ni , Ci
α and

the plane Ni , Ci
α , C

i
β as shown in Fig. 11(a). In addition, psi is also

a node feature which represents the dihedral angle between the
plane Ni , Ci

α , C
i
β and the plane Ci

α , C
i
β, N

i+1 as shown in Fig. 11(b).
Without loss of generality, we assign the first node feature for
torsion angle phi, namely 𝐹 ′1 and the second node feature for torsion
angle psi, namely 𝐹 ′2.

Our goal is to develop a graph translation model that can encode
both the node and edge features extracted from input protein graph
𝐺 (V, E, 𝐸, 𝐹 ) and generate a graph-based geometric representation

for protein 3D structures 𝐺 (V, E ′, 𝐸 ′, 𝐹 ′). As the input graph and
output graph have the same protein sequence composed of the same
set of nodes, we haveV = V ′. Hence the output is graph-based rep-
resentation for protein backbone geometry𝐺 (V, E ′, 𝐸 ′, 𝐹 ′), where
the pairwise distance information is represented by edge attributes
𝐸 ′ and the dihedral angle information is represented by node at-
tributes 𝐹 ′. The main advantage of such geometric representation is
the invariant property of angle-geometric graph representation and
distance-geometric graph representation. Hence they are invariant
under rotation of the coordinate system and graph translation. As
most of the research in this field is aimed at getting only distance
representation or torsion representation separately, here we solve
the above mentioned problems simultaneously by 3D geometric
graph generation. Since the input graph node and edge attributes
𝐸, 𝐹 and the target graph node and edge attributes 𝐸 ′, 𝐹 ′ are dif-
ferent, the learning from the multi-attribute graph input to the
graph geometric representation output can be defined as learning
a mapping: 𝐺 (V, E, 𝐸, 𝐹 ) → 𝐺 (V, E ′, 𝐸 ′, 𝐹 ′)

4 METHODOLOGY
In this section, we propose Protein Geometric Graph Neural Net-
work (PG-GNN) to model the geometric properties in terms of
distance and angle representations and learn the geometric rep-
resentations jointly from two separate translation paths. We first
describe the overall architecture of the PG-GNNwith the translation
paths. We then describe in detail how the geometric representa-
tions are learned with our proposed edge translation path and node
translation path collaboratively.

4.1 Model construction
Taking protein sequences as input to directly construct geomet-
ric 3D representation of the protein structures remains an open
problem in the area [3]. In light of the above discussion, we need
a framework that can dynamically handle different sized graph
inputs and jointly generate output of both node and edge attributes
together. With this aim in mind, in this paper we present a new
framework composed of two translation paths to predict edge and
node attributes separately. The key components of our framework
are edge translation path and node translation path. The illustration
of our proposed framework is shown in Fig. 3. For the edge transla-
tion path, a deep residual convolutional network is proposed that
takes both node and edge features as the input and output infor-
mation on the pairwise distance of all residue pairs in the protein.
The objective of the edge translation path is to learn the mapping:
𝐺 (V, E, 𝐸, 𝐹 ) → 𝐺 (𝐸 ′). For the node translation path, we utilize a
fast graph message-passing neural netowrk which takes predicted
pairwise distance potential and node features then outputs all node
torsion angles (𝜙,𝜓 ) in the protein graph. The objective of the node
translation path is to learn the mapping: 𝐺 (V, E, 𝐸, 𝐹 ) → 𝐺 (𝐹 ′).
The overall network is based on minimization with distance and
orientation restraints derived from both edge translation path and
node translation path outputs.

Although we can generate both node and edge attributes on
separate paths based on the framework described above, the pre-
dicted attributes may not be consistent as they are generated from
different paths.
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Figure 3: Overall architecture. The framework consists of two parts: the edge translation path is shown on top while node
translation path is shown on the bottom. Given input protein sequences, we extract the features for both nodes and edges.
Then the input can be denoted as 𝐺 (V, E, 𝐸, 𝐹 ) and fed into the framework as shown.

For the edge translation path, we use cross entropy loss;
only the probability corresponding to ground-truth participates
in calculation. The calculation can be written as 𝐿(𝐸, 𝐸 ′) =

− 1
𝐿×𝐿

∑𝐿
𝑖=1

∑𝐿
𝑗=1 𝑦𝑖 𝑗 × log𝑦𝑖 𝑗 where 𝐿 is the number of residues

for each protein, 𝑦𝑖 𝑗 is the predicted distance label between 𝑖-th
residue and 𝑗-th residue in a protein.

For the node translation path, we use mean squared error as loss
function. The equation is as follows:

𝐿(𝐹, 𝐹 ′) = 𝐿(𝐹1, 𝐹 ′1) + 𝐿(𝐹2, 𝐹
′
2)

=
1
𝐿

𝐿∑
𝑖=1

(
sin(𝜙𝑖 ) − sin(𝜙𝑖 )

)2
+ 1
𝐿

𝐿∑
𝑖=1

(
cos(𝜙𝑖 ) − cos(𝜙𝑖 )

)2
+ 1
𝐿

𝐿∑
𝑖=1

(
sin(𝜓𝑖 ) − sin(𝜓𝑖 )

)2
+ 1
𝐿

𝐿∑
𝑖=1

(
cos(𝜓𝑖 ) − cos(𝜓𝑖 )

)2
(1)

where 𝐿 is the number of residues for each protein.
For the overall training process, our PG-GNN is under the co-

guidance of both edge translation path to learn the graph edge
attributes and graph node translation path to learn the node at-
tributes information. We set a parameter _ to balance the degree of
the two models. Thus the overall loss function for the network is:

𝐿 = 𝐿(𝐸, 𝐸 ′) + _ × 𝐿(𝐹, 𝐹 ′) (2)

4.2 Edge Translation Path (ETP)
The aim for edge translation path is modeling all the interactions
between edges and nodes to generate the geometric distance graph
representation of the protein backbone structure. One challenging

problem for 3D protein structure modeling is that residues sequen-
tially far apart might be in spatially close contact in protein’s 3D
structure.

Designing a translation path that can model different range inter-
actions between residues and effects of all interactions connected
to one residue is the key for our edge translation path. As the image
convolution kernel only focuses on the source and its surrounding
pixels, the long range patterns cannot be characterized by tradi-
tional image convolution kernels. Thus how to model both of the
non-local and local pairwise relations in feature representation
space becomes the crucial factor for protein structure modeling.
Therefore, we propose a multi-branch convolution block for edge
translation path to capture all the influences from different inter-
action types in proteins. Fig. 4 shows the operation branches in a
single block, where the input graph attributes 𝐸𝑠 updated to output
graph edge attributes 𝐸𝑠+1. Each block composed of one identity
mapping branch, one edge-to-edge convolution branch, and one
two-dimensional (2D) convolution branch. The latter two branches
used different hyper-parameters (filter type and sizes) separately.
With 2D convolution operation focused on the local relations and
edge-to-edge convolution operation focused on the long range con-
tacts, our proposed edge translation block integrates both the local
and non-local contacts features to generate each edge’s attribute.

Edge-to-edge convolution layersWe implement an edge-to-
edge filter which can consider the edges that connect to one residue.
As shown in Fig. 4, the protein contact map has its distinct features,
unlike images. Thus, simply integrating the image convolution
methods without modification will not work well for this problem.
The edge-to-edge convolution is described as follows.
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Detailed illustration of edge to 
edge (e2e) convolution operation

Edge attributes tensor

Activation function

Edge update layer

2D convolution  filter

e2e convolution  filter

Figure 4: Details of protein graph edge convolution path for
one protein in a single block

Formally, we denote 𝐴 ∈ R𝐿×𝐿 as an adjacency matrix where
𝐿 is the length of each protein, 𝑊 𝑖, 𝑗 as the shared weights for
the edge 𝑒𝑖, 𝑗 , and 𝜌 as the non-linear differentiable function that
computes the activations. The graph convolution operation over
the edges 𝑒𝑖, 𝑗 for kernel𝑊 can be defined with 𝑓 𝑖, 𝑗

𝑊
=𝑊 𝑖, 𝑗 ·𝐴𝑙−1,𝑚

𝑖,𝑗
,

likewise the convolution operation 𝑓 𝑗,𝑖
𝐻

for kernel 𝐻 can be defined
as 𝑓 𝑗,𝑖

𝐻
= 𝑊 𝑖, 𝑗 · 𝐴𝑙−1,𝑚

𝑗,𝑖
. Then the edge-to-edge convolution is as

follows:

𝐴
𝑙,𝑛
𝑖, 𝑗

= 𝜌

(
𝐿∑
𝑛=1

(𝑓 𝑖, 𝑗
𝑊

+ 𝑓 𝑗,𝑖
𝐻

)
)

(3)

For the edge 𝑒𝑖, 𝑗 , the shared weights𝑊 𝑖, 𝑗 across kernel 𝐻 and𝑊
make the size of the latent convolutional representation indepen-
dent of the size of the input.

2D convolution layers We used 3 × 3 convolutional filters
for the 2D convolution layers, followed by batch normalization
and Exponential Linear Unit (ELU) activation function. Dilation
convolution filters can also be used in this convolution branch. The
illustration of the detailed convolution operation is shown in Fig.
2(a).

Edge updating layer Each edge is updated by integrating both
of the convolution operations outputs and identity mapping of
the inputs. All layer outputs and residual connections are added
together and fed into the next block. The details are shown in Fig.
4 as ⊕ operation. In this way, the edge will be generated by both
related nodes in the input sequences and edges that connected to
the same nodes.

4.3 Node Translation Path
For the node translation path, the model aims to generate the node
attributes matrix 𝐹 ′ based on learning the interactions between
protein residues and the effects of the residue edges to the residues.
As shown in Fig. 10, the torsion angles (𝜙,𝜓 ) are influenced by both
of the connected edges and nodes. Hence both node attributes and
the output adjacent matrix of the edge translation path are used as
the input for our node translation path. We use message passing to
capture all the nodes and edges influences for the torsion attribute
generation. The overall architecture of each block in node trans-
lation path contains two layers: message passing layer and node

update layers. The message passing layer learns all the influences
from each pair of nodes and the node update layers aggregate all
the influences and generate the new node attributes.

Message Passing on node layers:As shown in Fig. 3, the input
of the proposed node translation path is sampled from both the node
representation 𝐹 and edge representation 𝐸. We take the output
distance matrix from the edge translation path at each iteration to
use as edge representation 𝐸𝑣𝑤 to feed into the node translation
network [20]. The inputs are fed into the message-passing layer as
Equation (4) to aggregate all incoming messages.

𝑀𝑡 (ℎ𝑡𝑣, ℎ𝑡𝑤 , 𝑒𝑣𝑤) = 𝐴𝑒𝑣𝑤ℎ𝑡𝑤 (4)

Node updating layers: After computing the message passing
of all nodes, we update the hidden state by the Gated Recurrent
Units (GRU) as Equation (5).

ℎ𝑡+1𝑖 = 𝐺𝑅𝑈 (ℎ𝑡𝑖 ,𝑚
𝑡+1
𝑖 ) (5)

Readout layer: We denote node attributes 𝐹𝑖 = (𝐹1,𝑖 , 𝐹2,𝑖 )
for 𝑖-th residue in the protein sequence. We further represent
the dihedral angles as 𝑣𝑖 = (𝑣𝑎,𝑖 , 𝑣𝑏,𝑖 , 𝑣𝑐,𝑖 , 𝑣𝑑,𝑖 ), which denote the
sin𝜙𝑖 , cos𝜙𝑖 , sin𝜓𝑖 , cos𝜓𝑖 for training purposes. The readout layer
is shown in Fig. 3 as R in the last layer of the node translation path.
We have the readout function as follows:

𝑣 = 𝑅({ℎ𝑇𝑣 |𝑣 ∈ 𝐺}) (6)

Then we derive the prediction of dihedral angles of 𝐹𝑖 =

(𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑎,𝑖/𝑣𝑏,𝑖 ), 𝑎𝑟𝑐𝑡𝑎𝑛(𝑣𝑐,𝑖/𝑣𝑑,𝑖 )) from the output of the model
𝑣𝑖 = (𝑣𝑎,𝑖 , 𝑣𝑏,𝑖 , 𝑣𝑐,𝑖 , 𝑣𝑑,𝑖 ).

5 EXPERIMENT
In this section, we present our experiments using the proposed
methods on five real-world test datasets. The further details on the
parameters and features used in the experiments are provided in
the supplement material.

5.1 Dataset
The datasets that are used in the experiments are all real-world
datasets. The proteins with a sequence length of more than 300
residues were excluded from the datasets. The contact matrix for
the proteins in the test sets was calculated using the Ci

α atoms
distance. We define the contact between two residues where the
relative distances between Ci

α atoms of given residues are less than
8Å.

Training/validation dataset: The PDB25 dataset were filtered
as described in [30]. After the filtering process, 500 proteins were
randomly sampled for the test set, and the remaining proteins were
used for the training and validation of the models. The total number
of proteins used in the training dataset is 4726 proteins and the
validation dataset is 500 proteins. The validation dataset is used for
hyperparameter tuning and to prevent model overfitting.

Testing dataset: The trained models were tested on the following
datasets: the PDB25 dataset described above, the protein domains
used in the CASP11 and CASP13 [17], 76 hard CAMEO bench-
mark proteins, and a test set that contains 400 membrane proteins
(membrane dataset) [30].
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Figure 5: Overall performance comparison

L/10 L/5 L/2 L
LR-ACC

0.3

0.4

0.5

0.6

L/10 L/5 L/2 L
MR-ACC

L/10 L/5 L/2 L
SR-ACC

ResNet
ETP

 

(a) Dataset: CAMEO
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(b) Dataset: membrane
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(c) Dataset: CASP11
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(e) Dataset: PDB25

Figure 6: Performance comparison: proposed edge transla-
tion path (ETP) vs ResNet.
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(e) Dataset: PDB25

Figure 7: Performance comparison: Our proposed frame-
work PG-GNN vs Edge translation path only (ETP)
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5.2 Benchmarks
As we are the first to propose a multi-task framework for protein
graph representation learning, our proposed method is compared
with the two categories of methods: 1) the methods used for pro-
tein edge (residue-residue contact) prediction only or protein node
(torsion angles (𝜙,𝜓 )) prediction only. We adapted the methods
listed as baselines. The methods were implemented to reproduce
the results provided by the authors. The goal of re-implementing
the methods was to investigate the performance with the same
data. The existing web-servers provided by authors only make the
inference based on the pre-trained model which is trained with
different datasets. Hence, our re-implementation ensures baselines
to train the models with the same data and features. Each method
represents state-of-the-art performance in either contact map pre-
diction task, torsion angle prediction, or graph node prediction
task.

• CCMpred: This method is proposed by [27]. The source code
was directly used in the edge translation path of our frame-
work as baseline.

• ResNet: This method was first adapted by [30] to be used
for protein contact map prediction. We re-implemented the
neural network and used the same parameters stated in [30]
as our baseline for the edge translation path.

• Dilated Residual Networks (DRN): This method was used
by [28], [1], for protein residue-residue contact prediction.
We re-implemented the neural network and used the same
parameters stated in Deepcon [1] as our baseline for edge
translation path.

• Graph Convolution Network (GCN): We adapted plain GCN
with dynamic k-NN described in [19] as our baseline for node
translation path. We used K=5, 10, 20 for k-NN selection.

• ETP: This is our proposed method for edge translation path.
• Message passing neural network (MPNN): The method [20]
is described in the node translation path in our proposed
framework.

2) We adapted the above mentioned methods into our proposed
framework as baselines, namely CCMpred + GCN, CCMpred +
MPNN, ResNet + GCN, ResNet + MPNN, DRN + GCN, DRN +
MPNN, and ETP + GCN. To further validate the effectiveness of
the proposed node-edge joint convolution framework, we conduct
comparison baseline models of node translation path and edge
translation path trained separately as well.

5.3 Evaluation Metrics
5.3.1 Quantitative Evaluation. A set of metrics are used to measure
the similarity between the generated graph and the real graphs
in terms of node and edge attributes. To measure the generated
edge attribute performance, we follow the CASP measurements
[17]. We use the accuracy (ACC) and error (ERR) of the top L/k
predicted contacts. L is the sequence length of nodes in each graph
and k = 10, 5, 2, 1. We evaluate the non-local contacts where the
sequence distance belongs to the three groups: short range (SR)
[6,11], medium range (MR) [12,23], and long range (LR) [24,∞). To
measure the generated node attributes performance, we use MAE
(mean absolute error) between node attributes of generated and
real target graphs.

5.3.2 Qualitative Evalutaion. Qualitative evaluation are performed
to compare the reconstructed protein structure with the X-ray
crystallograph protein structures by the structure alignment of
superimposed protein backbones [26]. Full atom structures were
constructed by PyRosetta full-atom relaxation with our generated
distance and torsion angle restraints [8][34]. The lowest-energy full
atom model was selected for quality evaluation and visualization.

6 RESULT
6.1 Investigating Performance of

Multi-Attribute Properties
The performances of themethods described in Section 5.2 are shown
in Fig. 5. Fig. 5 is composed of five subplots, each illustrating the
results of five different datasets. The color of the points refers to the
specific method listed on the top of Fig. 5. The values on the x-axis
show the average error rate of the models’ performance for the
edge translation path. Similarly, the values on the y-axis show the
average MAE of the models’ performance for the node translation
path. Because lower is better for both the average error rate and
average MAE, the best performance model is the one that is closest
to the (0,0) point. Our proposed PG-GNN (red cross) shows the best
performance across all five datasets. PG-GNN proves the ability
to handle both the geometric node attributes and geometric edge
attributes together. CCMPred was compared as a co-evolutionary
analysis method for the edge translation path. All the deep neural
network models used in edge translation path performs at least
47.1% better in predicting the edge representations than threading
based method CCMPred. All of the proposed node translation mod-
els (MPNN) perform 25.2% better than the GCN models on average.
We did an ablation study in the next section to further investigate
the performances of the proposed edge-to-edge convolution branch
and the node translation path.

6.2 Ablation Study
6.2.1 Evaluation of the proposed graph edge convolution block. We
compared the robustness of the proposed edge translation path with
the edge translation path without the edge-to-edge convolution
shown in Fig. 6. The light blue bar shows the performance of the
network without the edge-to-edge convolution branch. The dark
blue bar shows the performance of our proposed framework. The
results of all five datasets follow the same trend. We observe similar
performance gains with the addition of the edge-to-edge convolu-
tion branch. The average ACCs with the proposed ETP for mem-
brane, CASP13, CAMEO, CASP11 and PDB25 datasets are 45.5%,
48.4%, 44.8%, 57.6%, and 60.4%, while the average ACCs without
the edge-to-edge convolution branch are 43.3%, 44.3%, 42.1%, 56.4%,
and 59.3%, respectively. The proposed framework with the edge-
to-edge convolution branch outperformed the model without the
edge-to-edge convolution branch in all long-range, medium-range,
and short-range metrics. The highest average ACC improvement
outperforms the baseline by 36.8%. This proves that the proposed
edge-to-edge convolution branch successfully helps the model’s
performance in learning edge-related representations.

6.2.2 Evaluation of the node translation path. Following the same
approach used for the evaluation of the edge translation path, we
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compared the performance of our node translation path (MPNN)
with GCN for translating node-level features in our proposed frame-
work. We use k = 5, 10, 20 for the training of GCN as the baseline.
The results of average MAE for (𝜙,𝜓 ) prediction compared with the
ground truth are following the same trend. Table 1 shows the aver-
age MAE for 𝜙 prediction and Table 2 shows the average MAE for𝜓
prediction. The average MAE results show that our proposed node
translation path successfully outperformed GCN models. Specifi-
cally, MPNN outperforms the comparison GCN methods by 20.6%,
22.5%, and 22.8% on node attribute 𝜙 on average. Comparing with
GCN, we show similar performance gains by combining our pro-
posed node translation path with edge translation path baselines in
Fig. 5. This proves the superiority of the proposed node translation
path in the interpretation of node-related representations.

Table 1: Performance comparison with different node trans-
lation path (𝜙)

Datasets GCN(k=5) GCN(k=10) GCN(k=20) MPNN

CASP11 32.350 34.107 33.343 25.696
CASP13 32.401 33.027 32.876 28.729
CAMEO 32.385 32.854 33.337 26.635
membrane 32.063 33.285 32.891 23.892
PDB25 32.143 33.027 34.642 24.114

6.2.3 Evaluation of the joint convolution framework. To evaluate
the performance of the joint convolution framework, we compare
our proposed joint convolution framework with a network that only
contains our proposed edge translation path. The results are shown
in Fig. 7. The light blue bar shows the performance of the network
without the node translation path. The dark blue bar shows the per-
formance of PG-GNN. The average ACC improvements of the joint
convolution framework for dataset membrane, CASP13, CAMEO,
CASP11, and PDB25 are 5.6%, 3.6%, 4.7%, 0.9%, and 1.2%. The per-
formance improvements are consistent across all five test datasets.
The joint convolution framework performs better in almost all met-
rics than the edge translation path alone consistently. Thus, the
proposed PG-GNN can not only jointly predict the node and edge
attributes, but also performs better than the edge translation path
alone.

Figure 8: Sensitivity analysis of training dataset sizes

6.3 Sensitivity analysis on the effect of training
dataset sizes

To further evaluate the effect of dataset sizes, we perform a sen-
sitivity analysis over eight different sizes of the training datasets.
The full training dataset contains 4725 proteins from which we ran-
domly sampled 4000, 2000, 1000, 500, 250, 125, and 75 proteins to
train the models. Fig. 10 shows the prediction results of the PDB25
test dataset. The yellow, green, dark blue and light blue bar segment
represents the average ACC results of the top L/10, L/5, L/2, and
L predicted contacts. We use a stacked bar graph with each bar
represents the specific size of the training dataset and colored bar
segment represent different ranges’ metrics. The performance of the
network continues to increase with the increase in the size of the
training dataset. We noticed a clear trend where the ACC increases
marginally from 500 to 1000 proteins compared to other samples.
The average ACCs of PG-GNN using 1000 proteins training set in-
creased by 240% comparing to 500 proteins training set. This trend
from 500 to 1000 proteins fades when we go to larger datasets. The
performances are consistent across all five test datasets.

6.4 Quality evaluation of generated protein
structure

Fig. 9 shows the case study of predicted structure representation
of five domains using the visualization program PyMol [26]. The
predicted protein backbone traces were presented in the first row in
yellow, where Cα atoms are balls and yellow lines between balls are
backbone traces. The constructed full-atom model and the native
structure are shown in the second row in cartoon representation.
Our constructed models are light blue and their native structures
are in pink. The constructed full atom models are consistent with
the predicted backbone traces. The predicted structural models
have very close topology to the native structures as shown in the
figure.

(a) 2c4j chain A (b) 2x27 chain X

(c) 3pb8 chain B (d) 4pzo chain A

Figure 9: The generated protein backbone trace(yellow), the
superimposition of the predicted full atom model (light
blue) and its native structure (pink).

7 CONCLUSION
In this work, we revisit a long-existing challenge. Unlike treating
the protein as a non-structural problem like an image, we propose
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to encode protein topological information into the node and edge
representation in graphs. The experiments conducted in this pa-
per proved the robustness of graph neural networks. Using our
proposed model, we can achieve comparable results with less train-
ing time and smaller training datasets. As we establish an open
problem for future research, it would be interesting to see if the
performance keeps increasing with more features used. Because
protein structures and inter-residue relations are ubiquitous in the
real world, we left the further improvement of this longstanding
challenge to future work.
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A SUPPLEMENTAL MATERIAL:
PRELIMINARIES

As illustrated in Fig. 10, protein backbone structure consists of
distance based geometric representation and dihedral angle repre-
sentation. We proceed to detail the geometric representations of
protein graphs.
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Figure 10: Protein backbone representation.

A.1 Distance-based geometric graph
representation

We denoted edge attributes 𝐸 ′ as distance geometric representa-
tion for protein graph. [18] introduced a chain of pseudoatoms
placed at Cα positions to replace the protein main chain model. We
adapted this simplification of the protein geometry and use dis-
tance matrix between Cα to represent the protein geometry. Thus,
the distance matrix 𝐸 ′ of Cα determines the overall shape of the
backbone structure.
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Figure 11: Dihedral angles Phi and Psi (a) The Phi 𝜙 torsion
angle measures the rotation of the N–Cα bond (b) The Psi𝜓
torsion angle measures the rotation of the Cα –CO bond.

A.2 Dihedral angle geometric graph
representation

The distance matrix 𝐸 ′ itself cannot fully characterize the overall
backbone structure due to the rotation of chemical bonds around

Cα : the N–Cα bond and the Cα –CO bond [25]. These two bonds
attached to the Cα can rotate freely to form the unique folding
patterns within protein. As shown in Fig. 10, the backbone dihe-
dral angles Phi (𝜙) and Psi (𝜓 ) are in sequence order on either
side of Cα to represent the rotation of these bonds. Thus Phi (𝜙)
and Psi (𝜓 ) can be denoted as node attributes 𝐹 ′ to evaluate the
rotation patterns’ rise around Cα . For 𝑖𝑡ℎ amino acid, the dihedral
angle 𝜙𝑖 is the dihedral angle between the plane Ci–1

β , Ni , Ci
α and

the plane Ni , Ci
α , C

i
β as shown in Fig. 11(a). The dihedral angle𝜓𝑖

is the dihedral angle between the plane Ni , Ci
α , C

i
β and the plane

Ci
α , C

i
β, N

i+1 as shown in Fig. 11(b). As each Cα associates with two
torsion agles (𝜙,𝜓 ), we denote the dihedral angle geometric graph
representation as node attributes matrix 𝐹 ′1, 𝐹

′
2.

B DETAILS RELATED TO EXPERIMENT
SECTION

B.1 Multi-attributes graph representation
features

Based on our formulation, each protein is represented by a graph
𝐺 (V, E, 𝐸, 𝐹 ) composed of nodes 𝑉 presenting residues and edges
𝐸 represented by the protein sequence. Thus the two types of fea-
tures used in this project are named node features and edge features
accordingly. Node feature matrix 𝐹 are the properties of the single
residue, including position-specific scoring matrix [5], predicted
secondary structure, and solvent accessibility predictions. Edge
feature matrix 𝐸 are the features that contain pairwise informa-
tion, such as co-evolution information [27], and distance potential
[6],[30]. The extracted node features and edge features are used
for the model described above. For edge translation path, the node
features 𝐹𝑖 and 𝐹 𝑗 are transformed by 1D convolution then concate-
nated into 𝐸𝑖, 𝑗 and 𝐸 𝑗,𝑖 to be used as feature map for edge attributes
generation. For node translation path, the node feature matrix 𝐹
and the pairwise distance matrix 𝐸 ′ from the edge translation path
output are used as the input for node attributes generation.

B.2 Training parameters
The parameters used in PG-GNN are presented in this section. All
experiments are conducted on a 64-bit machine with Nvidia GPU
(RTX 2080 Ti). For edge translation path, the number of edge transla-
tion blocks 𝑆𝐸 = 10. For each edge translation block, 4 convolution
layers per block 𝑁 was applied sequentially. In parallel, one edge-
to-edge layer was applied to input of the edge translation block.
For both convolution and edge-to-edge translations ELU activation
function was used after each convolution layer. For node translation
path, the number of blocks in message passing is 𝑆𝑉 = 6 with ReLU
activation function in each block. The network was trained using
Adam [15] with an initial learning rate of 0.00013.

C ADDITIONAL TABLES RELATED TO
RESULTS SECTION

Table 2 shows the average MAE for𝜓 prediction.
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Table 2: Performance comparison with different node trans-
lation path (𝜓 )

Datasets GCN(k=5) GCN(k=10) GCN(k=20) MPNN

CASP11 81.451 80.500 80.592 42.003
CASP13 81.864 83.178 84.556 46.944
CAMEO 81.863 84.185 80.602 44.110
membrane 82.229 81.423 84.559 35.713
PDB25 82.224 83.177 85.316 37.688
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